传递到皮肤上的神经电信号往往会衰减到非常微弱的水平,极易受到环境和身体运动的干扰。同时,为全面了解认知神经传导,需要对神经信号进行多模态感知,如磁共振成像(MRI)和功能近红外光谱(fNIRS)等。然而传统金属、导电聚合物电极既不能提供共形贴肤特性以精确传感神经电信号,也不能在光、磁情况下进行多模态成像。
近日,澳门永利唯一官网304刘楠课题组报道了一种约20 nm厚的MXene薄膜,能够检测电生理信号且与MRI和fNIRS兼容。该薄膜由聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)交联MXene制成,具有高电导率和透明度(11000 S/cm @ 89%)。其中,PEDOT:PSS不仅起到交联稳定MXene薄膜的作用,而且缩短了层间距离,实现了有效的电荷转移和高透明度。因此,它可以实现与皮肤或神经表面的低界面阻抗,以准确记录电生理信号(图1)。
图1. 超薄薄膜设计示意及相关性能
通过聚焦离子束刻蚀-高分辨透射电子显微镜(FIB-HRTEM)以及掠入射广角X射线散射(GIWAXS)等多种实验手段证明PEDOT:PSS交联前后的MXene层间距离及排列变化。为进一步理解层间交联的机制,还通过密度泛函理论(DFT)计算,深入研究了MXene与PEDOT:PSS的相互作用机理(图2)。
图2. 相关结构分析及理论计算
得益于超薄的厚度(~20 nm),该薄膜可以很容易地转移到不同的纹理表面贴附,从而促进界面粘附/稳定。这种超共形特性加之优异的导电性和赝电容优势,使得MXene薄膜与皮肤之间的电子-离子传导得以显著提升。该薄膜还具有与MRI、fNIRS良好的兼容性,可以实现多模态认知神经监测(如图3所示)。
图3. 多模态认知监测方面的应用
该论文的第一作者为宋德魁博士。该研究得到了韩国延世大学Kwanpyo Kim教授团队在FIB-HRTEM方面的大力支持,美国斯坦福大学Hongping Yan博士和Song Zhang博士在GIWAXS方面的帮助以及澳门永利唯一官网304认知神经科学与学习国家重点实验室卢春明教授课题组在fNIRS及多模态认知神经监测方面的支持与帮助。该研究还获得了国家自然科学基金委的资助。
论文链接:
An Ultra-thin MXene Film for Multimodal Sensing of Neuroelectrical Signals with Artifacts Removal, Adv. Mater. 2023, 202304956.
https://onlinelibrary.wiley.com/doi/10.1002/adma.202304956